On rough PDEs

Samy Tindel

University of Nancy

SPDE Semester - Newton Institute 2010

Joint work with: Aurélien Deya and Massimiliano Gubinelli
Sketch of the talk

1 Introduction
 - Pathwise type stochastic PDEs
 - Main aim

2 Description of the results
 - Abstract setting
 - Applications
 - Heuristic computations in the Young case
Sketch

1 Introduction
 - Pathwise type stochastic PDEs
 - Main aim

2 Description of the results
 - Abstract setting
 - Applications
 - Heuristic computations in the Young case
Sketch of the talk

1 Introduction
 - Pathwise type stochastic PDEs
 - Main aim

2 Description of the results
 - Abstract setting
 - Applications
 - Heuristic computations in the Young case
Equation under consideration

Equation:
- \(dy_t = Ay_t dt + f(y_t)dx_t \), with \(y_0 = \psi \)
- \(t \in [0, T] \), \(y_t \in \mathcal{B} \), with \(\mathcal{B} \) of the form \(L^p \)
- \(A = \) Laplace operator, with semi-group \((S_t)_{t \geq 0} \)
- \(f \) from \(\mathcal{B} \) to an operator space
- \(x \) general noise, \(\gamma \)-Hölder continuous, \(\gamma > 1/3 \)

Mild formulation:

\[
y_t = S_t \psi + \int_0^t S_{ts} f(y_s) dx_s, \hspace{1cm} \text{with} \hspace{1cm} S_{ts} := S_{t-s}
\]

Motivations: Engineering, Finance, Biophysics
Methods of resolution (1)

- **Brownian case**
 - Peszat-Zabczyk, Dalang (90s)
 - Well understood by probabilistic methods

- **Additive noise, \(x \) inf-dim fBm, for any \(H \)**
 - Tindel-Tudor-Viens ('03)
 - Wiener integrals estimates for fBm

- **Non-linear case, inf-dim fBm, \(H > 1/2 \)**
 - Maslowski-Nualart ('03), smooth noise in space
 - Fractional integrals

- **Linear cases, \(x \) finite-dim**
 - Caruana-Friz ('08-'09)
 - Abstract setting of rough paths

- **Nonlinear cases, \(x \) finite-dim, \(A \) generates a group**
 - Teichmann ('09)
 - Abstract setting of rough paths
Methods of resolution (2)

- **Non-linear case, $x \gamma$-Hölder path with $\gamma > 1/2**
 - Non-smooth noise in space
 - Young integration in infinite dimension
 - **Local solution**, due to the fact that f is only *locally Lipschitz*
 - Lejay-Gubinelli-Tindel ('06)

- **Wave equation, $d = 1$, x space-time noise with $\gamma > 1/2**
 - Young integration in the plane
 - Quer-Tindel ('07)

- **Genuine rough paths setting for SPDEs**
 - Applications: global solution for fBm, $H > 5/6$
 - Brownian case, *specific cases of f*
 - Gubinelli-Tindel ('10)
Sketch of the talk

1. Introduction
 - Pathwise type stochastic PDEs
 - Main aim

2. Description of the results
 - Abstract setting
 - Applications
 - Heuristic computations in the Young case
General aim

- Existence and uniqueness results for
 \[dy_t = Ay_t dt + f(y_t)dx_t \]

 \(y_t \in \) function in space, Hölder continuous in time

 - \(A \) Laplace operator, \(f \) non-linear coefficient
 - \(x_t \) finite dimensional, \(\gamma \)-Hölder continuous in time, \(\gamma > 1/3 \)
 - Application: \(x \equiv fBm \), with \(H > 1/3 \)
Sketch

1 Introduction
 - Pathwise type stochastic PDEs
 - Main aim

2 Description of the results
 - Abstract setting
 - Applications
 - Heuristic computations in the Young case
Sketch of the talk

1 Introduction
 - Pathwise type stochastic PDEs
 - Main aim

2 Description of the results
 - Abstract setting
 - Applications
 - Heuristic computations in the Young case
The rough paths black box for SDEs

Hypothesis: \(x \in C^\gamma(\mathbb{R}^d) \) with \(\gamma > 1/3 \)

\(x \) allows to define a Levy area \(x^2 \in C^{2\gamma}(\mathbb{R}^{d \times d}) \equiv \int dx \int dx \)

Coefficient \(\sigma \in C^3_b \)

Main rough paths theorem: Let \(y \) be the solution to \(dy = \sigma(y) \, dx \).

Then (Lyons-Qian, Friz-Victoir, Gubinelli)

\[
F : \mathbb{R}^n \times C^\gamma(\mathbb{R}^d) \times C^{2\gamma}(\mathbb{R}^{d \times d}) \rightarrow C^\gamma(\mathbb{R}^n), \quad (a, x, x^2) \mapsto y
\]

is a continuous map
State space for the solution (SPDEs)

L^p space: $\mathcal{B}_p := L^p(\mathbb{R}^n)$

Fractional Sobolev spaces: for $\alpha \in [0, 1/2)$,

$$\mathcal{B}_{\alpha,p} := \mathcal{W}^{2\alpha,p}(\mathbb{R}^n) = [\text{Id} - \Delta]^{-\alpha}(L^p(\mathbb{R}^n))$$

Action of the heat semigroup:

Contraction: S_t contraction on $\mathcal{B}_{\alpha,p}$

Regularization: $\|S_t\varphi\|_{\mathcal{B}_{\alpha,p}} \leq c_\alpha t^{-\alpha} \|\varphi\|_{\mathcal{B}_p}$.
A (slightly) unusual formulation

- We solve equation (1) under the form:

\[y_t = S_t \psi + \sum_{i=1}^{N} \int_{0}^{t} S_{ts} \, dx^i_s \, f_i(y_s), \]

(2)

- \(f_i \) function from \(B_p \) to \(B_p \)
- \(x^i \) scalar noise
- Formulation (2) fits better to rough path type expansions

Example of nonlinear term: \([f(\varphi)](\xi) = \sigma(\xi, \varphi(\xi)), \) where \(\sigma : \mathbb{R}^n \times \mathbb{R} \rightarrow \mathbb{R} \) rapidly decreasing function in \(\xi. \)
Operator valued Levy area

First order integrals: \(a_{us} = S_{us} - \text{Id} \)

\[
X_{ts}^{x,i}(\varphi) = \int_s^t S_{tu}(\varphi) \, dx_u^i \\
X_{ts}^{xa,i}(\varphi, \psi) = \int_s^t S_{tu} [a_{us}(\varphi) \cdot \psi] \, dx_u^i
\]

Second order integral: \(\delta x_{us} = x_u - x_s \)

\[
X_{ts}^{xx,ij}(\varphi) = \int_s^t S_{tu}(\varphi) \, \delta x_{us}^j \, dx_u^i
\]

More specifically: if \(g := \) heat kernel

\[
\left[X_{ts}^{xx,ij}(\varphi) \right](\xi) = \int_s^t \left(\int_{\mathbb{R}^n} g_{t-u}(\xi - \eta) \varphi(\eta) \, d\eta \right) \, \delta x_{us}^j \, dx_u^i
\]
General result (loose formulation)

Theorem

Assume

- \(x \) allows to define \(X^x, X^{xa} \) and \(X^{xx} \) (operator valued on \(\mathcal{B}_{\gamma,p} \))
- \(X^x \in C^\gamma \) and \(X^{xa}, X^{xx} \in C^{2\gamma} \)
- \(\gamma > 1/3 \)
- \(f \) regular enough

Then the equation

\[
dy_t = Ay_t dt + dx_t f(y_t)
\]

has a unique local solution \(y \) on \([0, T] \) (global if \(\gamma > 1/2 \))

- \(y \) is a continuous function of \(X^x, X^{xa} \) and \(X^{xx} \)
Sketch of the talk

1 Introduction
 - Pathwise type stochastic PDEs
 - Main aim

2 Description of the results
 - Abstract setting
 - Applications
 - Heuristic computations in the Young case
Examples of application

Space-time dependence:
\{\sigma^j; j \leq N\} collection of rapidly decreasing smooth functions

Generic form of the noise: \(x_t = \sum_{j=1}^{N} \sigma^j B_t^j \)

Application in the Young setting: \(B_j \equiv fBm \) with \(H > 1/2 \)

Application in the rough setting: \(B_j \equiv fBm \) with \(H > 1/3 \)

Equation which can be solved:

\[
\partial_t y_t(\xi) = \Delta y_t(\xi) + \sum_{j=1}^{N} \sigma^j(\xi) f(y_t(\xi)) dB_t^j
\]
Sketch of the talk

1 Introduction
 - Pathwise type stochastic PDEs
 - Main aim

2 Description of the results
 - Abstract setting
 - Applications
 - Heuristic computations in the Young case
Setting

Notational simplification:
- \(x \in C^\gamma \) with \(\gamma > 1/2 \), 1-dimensional
- \([f(y)](\xi) = \sigma(\xi, y(\xi))\).

Equation we wish to solve:

\[
y_t = S_t \psi + \int_0^t S_{ts} \, dx_s \, f(y_s)
\]

Hypothesis:
The solution \(y_t \) exists in a space \(C^\gamma([0, T]; B_p) \), with \(\gamma > 1/2 \)

Main step: define the integral \(\int_0^t S_{ts} \, dx_s \, f(y_s) \)
\(\rightarrow \) fixed point argument
Formal computations

One way to catch the regularity of the solution y:

$$(\hat{\delta}y)_{ts} := y_t - S_{ts}y_s = \int_s^t S_{tu} \, dx_u \, f(y_u)$$

$$= \left(\int_s^t S_{tu} \, dx_u\right) f(y_s) + \int_s^t S_{tu} \, dx_u \, \delta(f(y))_{us}$$

$$= X^x_{ts} f(y_s) + y^\sharp_{ts}$$

Definition of the terms:

- $X^x_{ts} f(y_s)$ well-defined as long as X^x is well-defined as an operator acting on B_p
- y^\sharp_{ts} defined as a Young integral if $\gamma > 1/2$
 with Hölder regularity > 1
Integration result

Proposition

Assume that x allows to build X^x such that for $\gamma > 1/2$,

- For any $\alpha \in [0, 1/2)$ s.t. $2\alpha p > 1$, $X^{x,i} \in C^\gamma(\mathcal{L}(B_\alpha,p, B_\alpha,p))$
- The algebraic relation $\hat{\delta}X^{x,i} = 0$ is satisfied.

Consider $z \in C^0_1(B_{\gamma,p}) \cap C^\gamma_1(B_p)$.

Then the element $\int_s^t S_{tu}dx_uz_u$

1. Is well-defined as a Young integral
2. Defines an element of C^γ, linearly bounded in terms of z
3. Is limit of $\sum_{(t_k) \in \Pi} S_{tt_{k+1}}X_{t_{k+1}t_k}z_{t_k}^{i}$ along partitions Π